import numpy as np import pandas as pd df =pd.read_csv('3rd progrma.csv') df df.head() df.tail() df.describe() df.info() df.isnull().sum() df.drop("name",axis=1,inplace=True) df df.drop(10,axis=0,inplace=True) df df["age"]=df["age"].fillna(df["age"].mean()) df df["salary"]=df["salary"].fillna(df["salary"].max()) df df.drop_duplicates() x=np.array(df)[:,:-1] x y=np.array(df)[:,-1] y from sklearn.compose import ColumnTransformer from sklearn.preprocessing import OneHotEncoder ct=ColumnTransformer(transformers=[('encoder',OneHotEncoder(),[0])],remainder="passthrough") x=np.array(ct.fit_transform(x)) x from sklearn.preprocessing import(incomplete code)