import numpy as np import matplotlib.pyplot as plt import pandas as pd datasets = pd.read_csv('10.csv') X=datasets.iloc[:,[2,3]].values Y=datasets.iloc[:,4].values from sklearn.model_selection import train_test_split X_Train,X_Test,Y_Train,Y_Test=train_test_split(X,Y,test_size=0.25,random_state=0) from sklearn.preprocessing import StandardScaler sc_X=StandardScaler() X_Train = sc_X.fit_transform(X_Train) X_Test = sc_X.transform(X_Test) from sklearn.svm import SVC classifier = SVC(kernel ='linear',random_state=0) classifier.fit(X_Train,Y_Train) Y_pred = classifier.predict(X_Test) from sklearn import metrics print("Accuracy score",metrics.accuracy_score(Y_Test,Y_pred)) plt.scatter(X_Train[:,0],X_Train[:,1],c=Y_Train) plt.title('Support vector Machine (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') w=classifier.coef_[0] a=-w[0]/w[1] xx=np.linspace(-2.5,2.5) yy=a*xx -(classifier.intercept_[0])/w[1] plt.plot(xx,yy) plt.show(); plt.scatter(X_Test[:,0],X_Test[:,1],c=Y_Test) plt.title('Support vector Machine (Training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') w=classifier.coef_[0] a=-w[0]/w[1] xx=np.linspace(-2.5,2.5) yy=a*xx -(classifier.intercept_[0])/w[1] plt.plot(xx,yy) plt.show();