import numpy as np # numpy.linalg.inv() matrix = np.array([[1, 2], [3, 4]]) inverse_matrix = np.linalg.inv(matrix) print(inverse_matrix) # numpy.linalg.det() matrix = np.array([[1, 2], [3, 4]]) determinant = np.linalg.det(matrix) print(determinant) # numpy.linalg.eig() matrix = np.array([[1, 2], [3, 4]]) eigenvalues, eigenvectors = np.linalg.eig(matrix) print("Eigenvalues:", eigenvalues) print("Eigenvectors:", eigenvectors) # numpy.linalg.svd() matrix = np.array([[1, 2], [3, 4], [5, 6]]) U, S, VT = np.linalg.svd(matrix) print("U:", U) print("S:", S) print("VT:", VT) # numpy.linalg.norm() matrix = np.array([[1, 2], [3, 4]]) matrix_norm = np.linalg.norm(matrix) print(matrix_norm)