from sklearn import datasets from sklearn.ensemble import RandomForestClassifier import pandas as pd from sklearn.model_selection import train_test_split from sklearn import metrics iris = datasets.load_iris() print(iris.target_names) print(iris.feature_names) X,y =datasets.load_iris(return_X_y = True) X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.30) data=pd.DataFrame({'sepallength':iris.data[:,0],'sepalwidth':iris.data[:,1], 'petallenngth':iris.data[:,2],'petalwidth':iris.data[:,3], 'speies':iris.target}) print(data.head()) clf=RandomForestClassifier(n_estimators=2) clf.fit(X_train,y_train) y_pred=clf.predict(X_test) print() print("ACCURACY OF THE MODEL: ",metrics.accuracy_score(y_test,y_pred)) clf.predict([[3,3,2,2]]) clf.predict([[6,6,6,6]])