////////////////////prog_9////////////////////// import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.mixture import GaussianMixture from sklearn.cluster import KMeans data=pd.read_csv('prog9.csv') print("Input data and shape") print(data.shape) data.head() f1 = data['V1'].values f2 = data['V2'].values x = np.array(list(zip(f1,f2))) print("X", x) print('Graph for whole dataset') plt.scatter(f1,f2,c='black',s=7) plt.show() kmeans = KMeans(20, random_state=0) labels=kmeans.fit(x).predict(x) print("labels",labels) centroids = kmeans.cluster_centers_ print("centroids",centroids) plt.scatter(x[:,0], x[:,1], c=labels, s=40, cmap='viridis'); print('Graph using Kmeans Algorithm ') plt.scatter(centroids[:,0],centroids[:,1], marker='*', s=200, c='#050505') plt.show() gmm=GaussianMixture(n_components=3).fit(x) labels = gmm.predict(x) probs = gmm.predict_proba(x) size = 10*probs.max(1)**3 print('Graph using EM Agoritm') plt.scatter(x[:,0], x[:,1], c=labels, s=size, cmap='viridis'); plt.show() ////////////////////data_set////////////////////// V1,V2 5.1,3.5 4.9,3.0 4.7,3.2 4.6,3.1 5.0,3.6 5.4,3.9 4.6,3.4 5.0,3.4 4.4,2.9 4.9,3.1 5.4,3.7 4.8,3.4 4.8,3.0 4.3,3.0 5.8,4.0 5.7,4.4 5.4,3.9 5.1,3.5 5.7,3.8 5.1,3.8 5.4,3.4 5.1,3.7 4.6,3.6 5.1,3.3 4.8,3.4 5.0,3.0 5.0,3.4 5.2,3.5 5.2,3.4 4.7,3.2 4.8,3.1 5.4,3.4 5.2,4.1 5.5,4.2 4.9,3.1 5.0,3.2 5.5,3.5 4.9,3.1 4.4,3.0 5.1,3.4 5.0,3.5 4.5,2.3 4.4,3.2 5.0,3.5 5.1,3.8 4.8,3.0 5.1,3.8 4.6,3.2 5.3,3.7 5.0,3.3 7.0,3.2 6.4,3.2 6.9,3.1 5.5,2.3 6.5,2.8 5.7,2.8 6.3,3.3 4.9,2.4 6.6,2.9 5.2,2.7 5.0,2.0 5.9,3.0 6.0,2.2 6.1,2.9 5.6,2.9 6.7,3.1 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.1,3.5 4.9,3.0 4.7,3.2 4.6,3.1 5.0,3.6 5.4,3.9 4.6,3.4 5.0,3.4 4.4,2.9 4.9,3.1 5.4,3.7 4.8,3.4 4.8,3.0 4.3,3.0 5.8,4.0 5.7,4.4 5.4,3.9 5.1,3.5 5.7,3.8 5.1,3.8 5.4,3.4 5.1,3.7 4.6,3.6 5.1,3.3 4.8,3.4 5.0,3.0 5.0,3.4 5.2,3.5 5.2,3.4 4.7,3.2 4.8,3.1 5.4,3.4 5.2,4.1 5.5,4.2 4.9,3.1 5.0,3.2 5.5,3.5 4.9,3.1 4.4,3.0 5.1,3.4 5.0,3.5 4.5,2.3 4.4,3.2 5.0,3.5 5.1,3.8 4.8,3.0 5.1,3.8 4.6,3.2 5.3,3.7 5.0,3.3 7.0,3.2 6.4,3.2 6.9,3.1 5.5,2.3 6.5,2.8 5.7,2.8 6.3,3.3 4.9,2.4 6.6,2.9 5.2,2.7 5.0,2.0 5.9,3.0 6.0,2.2 6.1,2.9 5.6,2.9 6.7,3.1 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.1,3.5 4.9,3.0 4.7,3.2 4.6,3.1 5.0,3.6 5.4,3.9 4.6,3.4 5.0,3.4 4.4,2.9 4.9,3.1 5.4,3.7 4.8,3.4 4.8,3.0 4.3,3.0 5.8,4.0 5.7,4.4 5.4,3.9 5.1,3.5 5.7,3.8 5.1,3.8 5.4,3.4 5.1,3.7 4.6,3.6 5.1,3.3 4.8,3.4 5.0,3.0 5.0,3.4 5.2,3.5 5.2,3.4 4.7,3.2 4.8,3.1 5.4,3.4 5.2,4.1 5.5,4.2 4.9,3.1 5.0,3.2 5.5,3.5 4.9,3.1 4.4,3.0 5.1,3.4 5.0,3.5 4.5,2.3 4.4,3.2 5.0,3.5 5.1,3.8 4.8,3.0 5.1,3.8 4.6,3.2 5.3,3.7 5.0,3.3 7.0,3.2 6.4,3.2 6.9,3.1 5.5,2.3 6.5,2.8 5.7,2.8 6.3,3.3 4.9,2.4 6.6,2.9 5.2,2.7 5.0,2.0 5.9,3.0 6.0,2.2 6.1,2.9 5.6,2.9 6.7,3.1 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.1,3.5 4.9,3.0 4.7,3.2 4.6,3.1 5.0,3.6 5.4,3.9 4.6,3.4 5.0,3.4 4.4,2.9 4.9,3.1 5.4,3.7 4.8,3.4 4.8,3.0 4.3,3.0 5.8,4.0 5.7,4.4 5.4,3.9 5.1,3.5 5.7,3.8 5.1,3.8 5.4,3.4 5.1,3.7 4.6,3.6 5.1,3.3 4.8,3.4 5.0,3.0 5.0,3.4 5.2,3.5 5.2,3.4 4.7,3.2 4.8,3.1 5.4,3.4 5.2,4.1 5.5,4.2 4.9,3.1 5.0,3.2 5.5,3.5 4.9,3.1 4.4,3.0 5.1,3.4 5.0,3.5 4.5,2.3 4.4,3.2 5.0,3.5 5.1,3.8 4.8,3.0 5.1,3.8 4.6,3.2 5.3,3.7 5.0,3.3 7.0,3.2 6.4,3.2 6.9,3.1 5.5,2.3 6.5,2.8 5.7,2.8 6.3,3.3 4.9,2.4 6.6,2.9 5.2,2.7 5.0,2.0 5.9,3.0 6.0,2.2 6.1,2.9 5.6,2.9 6.7,3.1 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.1,3.5 4.9,3.0 4.7,3.2 4.6,3.1 5.0,3.6 5.4,3.9 4.6,3.4 5.0,3.4 4.4,2.9 4.9,3.1 5.4,3.7 4.8,3.4 4.8,3.0 4.3,3.0 5.8,4.0 5.7,4.4 5.4,3.9 5.1,3.5 5.7,3.8 5.1,3.8 5.4,3.4 5.1,3.7 4.6,3.6 5.1,3.3 4.8,3.4 5.0,3.0 5.0,3.4 5.2,3.5 5.2,3.4 4.7,3.2 4.8,3.1 5.4,3.4 5.2,4.1 5.5,4.2 4.9,3.1 5.0,3.2 5.5,3.5 4.9,3.1 4.4,3.0 5.1,3.4 5.0,3.5 4.5,2.3 4.4,3.2 5.0,3.5 5.1,3.8 4.8,3.0 5.1,3.8 4.6,3.2 5.3,3.7 5.0,3.3 7.0,3.2 6.4,3.2 6.9,3.1 5.5,2.3 6.5,2.8 5.7,2.8 6.3,3.3 4.9,2.4 6.6,2.9 5.2,2.7 5.0,2.0 5.9,3.0 6.0,2.2 6.1,2.9 5.6,2.9 6.7,3.1 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.1,3.5 4.9,3.0 4.7,3.2 4.6,3.1 5.0,3.6 5.4,3.9 4.6,3.4 5.0,3.4 4.4,2.9 4.9,3.1 5.4,3.7 4.8,3.4 4.8,3.0 4.3,3.0 5.8,4.0 5.7,4.4 5.4,3.9 5.1,3.5 5.7,3.8 5.1,3.8 5.4,3.4 5.1,3.7 4.6,3.6 5.1,3.3 4.8,3.4 5.0,3.0 5.0,3.4 5.2,3.5 5.2,3.4 4.7,3.2 4.8,3.1 5.4,3.4 5.2,4.1 5.5,4.2 4.9,3.1 5.0,3.2 5.5,3.5 4.9,3.1 4.4,3.0 5.1,3.4 5.0,3.5 4.5,2.3 4.4,3.2 5.0,3.5 5.1,3.8 4.8,3.0 5.1,3.8 4.6,3.2 5.3,3.7 5.0,3.3 7.0,3.2 6.4,3.2 6.9,3.1 5.5,2.3 6.5,2.8 5.7,2.8 6.3,3.3 4.9,2.4 6.6,2.9 5.2,2.7 5.0,2.0 5.9,3.0 6.0,2.2 6.1,2.9 5.6,2.9 6.7,3.1 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.1,3.5 4.9,3.0 4.7,3.2 4.6,3.1 5.0,3.6 5.4,3.9 4.6,3.4 5.0,3.4 4.4,2.9 4.9,3.1 5.4,3.7 4.8,3.4 4.8,3.0 4.3,3.0 5.8,4.0 5.7,4.4 5.4,3.9 5.1,3.5 5.7,3.8 5.1,3.8 5.4,3.4 5.1,3.7 4.6,3.6 5.1,3.3 4.8,3.4 5.0,3.0 5.0,3.4 5.2,3.5 5.2,3.4 4.7,3.2 4.8,3.1 5.4,3.4 5.2,4.1 5.5,4.2 4.9,3.1 5.0,3.2 5.5,3.5 4.9,3.1 4.4,3.0 5.1,3.4 5.0,3.5 4.5,2.3 4.4,3.2 5.0,3.5 5.1,3.8 4.8,3.0 5.1,3.8 4.6,3.2 5.3,3.7 5.0,3.3 7.0,3.2 6.4,3.2 6.9,3.1 5.5,2.3 6.5,2.8 5.7,2.8 6.3,3.3 4.9,2.4 6.6,2.9 5.2,2.7 5.0,2.0 5.9,3.0 6.0,2.2 6.1,2.9 5.6,2.9 6.7,3.1 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.1,3.5 4.9,3.0 4.7,3.2 4.6,3.1 5.0,3.6 5.4,3.9 4.6,3.4 5.0,3.4 4.4,2.9 4.9,3.1 5.4,3.7 4.8,3.4 4.8,3.0 4.3,3.0 5.8,4.0 5.7,4.4 5.4,3.9 5.1,3.5 5.7,3.8 5.1,3.8 5.4,3.4 5.1,3.7 4.6,3.6 5.1,3.3 4.8,3.4 5.0,3.0 5.0,3.4 5.2,3.5 5.2,3.4 4.7,3.2 4.8,3.1 5.4,3.4 5.2,4.1 5.5,4.2 4.9,3.1 5.0,3.2 5.5,3.5 4.9,3.1 4.4,3.0 5.1,3.4 5.0,3.5 4.5,2.3 4.4,3.2 5.0,3.5 5.1,3.8 4.8,3.0 5.1,3.8 4.6,3.2 5.3,3.7 5.0,3.3 7.0,3.2 6.4,3.2 6.9,3.1 5.5,2.3 6.5,2.8 5.7,2.8 6.3,3.3 4.9,2.4 6.6,2.9 5.2,2.7 5.0,2.0 5.9,3.0 6.0,2.2 6.1,2.9 5.6,2.9 6.7,3.1 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.1,3.5 4.9,3.0 4.7,3.2 4.6,3.1 5.0,3.6 5.4,3.9 4.6,3.4 5.0,3.4 4.4,2.9 4.9,3.1 5.4,3.7 4.8,3.4 4.8,3.0 4.3,3.0 5.8,4.0 5.7,4.4 5.4,3.9 5.1,3.5 5.7,3.8 5.1,3.8 5.4,3.4 5.1,3.7 4.6,3.6 5.1,3.3 4.8,3.4 5.0,3.0 5.0,3.4 5.2,3.5 5.2,3.4 4.7,3.2 4.8,3.1 5.4,3.4 5.2,4.1 5.5,4.2 4.9,3.1 5.0,3.2 5.5,3.5 4.9,3.1 4.4,3.0 5.1,3.4 5.0,3.5 4.5,2.3 4.4,3.2 5.0,3.5 5.1,3.8 4.8,3.0 5.1,3.8 4.6,3.2 5.3,3.7 5.0,3.3 7.0,3.2 6.4,3.2 6.9,3.1 5.5,2.3 6.5,2.8 5.7,2.8 6.3,3.3 4.9,2.4 6.6,2.9 5.2,2.7 5.0,2.0 5.9,3.0 6.0,2.2 6.1,2.9 5.6,2.9 6.7,3.1 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.1,3.5 4.9,3.0 4.7,3.2 4.6,3.1 5.0,3.6 5.4,3.9 4.6,3.4 5.0,3.4 4.4,2.9 4.9,3.1 5.4,3.7 4.8,3.4 4.8,3.0 4.3,3.0 5.8,4.0 5.7,4.4 5.4,3.9 5.1,3.5 5.7,3.8 5.1,3.8 5.4,3.4 5.1,3.7 4.6,3.6 5.1,3.3 4.8,3.4 5.0,3.0 5.0,3.4 5.2,3.5 5.2,3.4 4.7,3.2 4.8,3.1 5.4,3.4 5.2,4.1 5.5,4.2 4.9,3.1 5.0,3.2 5.5,3.5 4.9,3.1 4.4,3.0 5.1,3.4 5.0,3.5 4.5,2.3 4.4,3.2 5.0,3.5 5.1,3.8 4.8,3.0 5.1,3.8 4.6,3.2 5.3,3.7 5.0,3.3 7.0,3.2 6.4,3.2 6.9,3.1 5.5,2.3 6.5,2.8 5.7,2.8 6.3,3.3 4.9,2.4 6.6,2.9 5.2,2.7 5.0,2.0 5.9,3.0 6.0,2.2 6.1,2.9 5.6,2.9 6.7,3.1 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 5.6,3.0 5.8,2.7 6.2,2.2 5.6,2.5 5.9,3.2 6.1,2.8 6.3,2.5 6.1,2.8 6.4,2.9 6.6,3.0 6.8,2.8 6.7,3.0 6.0,2.9 5.7,2.6 5.5,2.4 5.5,2.4 5.8,2.7 6.0,2.7 5.4,3.0 6.0,3.4 6.7,3.1 6.3,2.3 5.6,3.0 5.5,2.5 5.5,2.6 6.1,3.0 5.8,2.6 5.0,2.3 5.6,2.7 5.7,3.0 5.7,2.9 6.2,2.9 5.1,2.5 //////////output//////////////////////// Input data and shape (1260, 2) X [[5.1 3.5] [4.9 3. ] [4.7 3.2] ... [5.7 2.9] [6.2 2.9] [5.1 2.5]] Graph for whole dataset FIGURE C:\Users\BITM\anaconda3\lib\site-packages\sklearn\cluster\_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of `n_init` explicitly to suppress the warning warnings.warn( labels [ 1 18 12 ... 10 4 15] centroids [[6.43571429 2.86428571] [5.07272727 3.42727273] [5.51698113 2.46415094] [5.425 3.5 ] [6.0703125 2.865625 ] [5.11666667 3.73333333] [4.375 3.025 ] [6.225 2.3125 ] [4.875 2.25833333] [6.95 3.15 ] [5.6 2.972 ] [5.75 3.9 ] [4.675 3.3125 ] [5.44 4.1 ] [5.736 2.674 ] [5.13571429 2.57142857] [5.95 3.3 ] [6.68913043 2.98043478] [4.88888889 3.06666667] [6.35 3.25 ]] Graph using Kmeans Algorithm FIGURE Graph using EM Agoritm FIGURE import numpy as np import matplotlib.pyplot as plt import pandas as pd datasets = pd.read_csv('10.csv') x = datasets.iloc[:,[2,3]].values y = datasets.iloc[:,4].values from sklearn.model_selection import train_test_split X_Train,X_Test, Y_Train, Y_Test = train_test_split(x,y, test_size = 0.25, random_state = 0) from sklearn.preprocessing import StandardScaler sc_X = StandardScaler() X_Train = sc_X.fit_transform(X_Train) X_Test = sc_X.transform(X_Test) from sklearn.svm import SVC classifier = SVC(kernel = 'linear' , random_state = 0) classifier.fit(X_Train, Y_Train) Y_Pred = classifier.predict(X_Test) from sklearn import metrics print("Accuracy score",metrics.accuracy_score(Y_Test, Y_Pred)) plt.scatter(X_Train[:,0], X_Train[:,1],c=Y_Train) plt.title('support vector machine (training set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') W=classifier.coef_[0] a=-W[0]/W[1] xx=np.linspace(-2.5,2.5) yy=a*xx -(classifier.intercept_[0])/W[1] plt.plot(xx,yy) plt.show(); plt.scatter(X_Test[:,0], X_Test[:,1],c=Y_Test) plt.title('support vector machine (test set)') plt.xlabel('Age') plt.ylabel('Estimated Salary') W=classifier.coef_[0] a=-W[0]/W[1] xx=np.linspace(-2.5,2.5) yy=a*xx -(classifier.intercept_[0])/W[1] plt.plot(xx,yy) plt.show(); ////////////////////////////////dataset///////////////////// User ID,Gender,Age,EstimatedSalary,Purchased 15624510,Male,19,19000,0 15810944,Male,35,20000,0 15668575,Female,26,43000,0 15603246,Female,27,57000,0 15804002,Male,19,76000,0 15728773,Male,27,58000,0 15598044,Female,27,84000,0 15694829,Female,32,150000,1 15600575,Male,25,33000,0 15727311,Female,35,65000,0 15570769,Female,26,80000,0 15606274,Female,26,52000,0 15746139,Male,20,86000,0 15704987,Male,32,18000,0 15628972,Male,18,82000,0 15697686,Male,29,80000,0 15733883,Male,47,25000,1 15617482,Male,45,26000,1 15704583,Male,46,28000,1 15621083,Female,48,29000,1 15649487,Male,45,22000,1 15736760,Female,47,49000,1 15714658,Male,48,41000,1 15599081,Female,45,22000,1 15705113,Male,46,23000,1 15631159,Male,47,20000,1 15792818,Male,49,28000,1 15633531,Female,47,30000,1 15744529,Male,29,43000,0 15669656,Male,31,18000,0 15581198,Male,31,74000,0 15729054,Female,27,137000,1 15573452,Female,21,16000,0 15776733,Female,28,44000,0 15724858,Male,27,90000,0 15713144,Male,35,27000,0 15690188,Female,33,28000,0 15689425,Male,30,49000,0 15671766,Female,26,72000,0 15782806,Female,27,31000,0 15764419,Female,27,17000,0 15591915,Female,33,51000,0 15772798,Male,35,108000,0 15792008,Male,30,15000,0 15715541,Female,28,84000,0 15639277,Male,23,20000,0 15798850,Male,25,79000,0 15776348,Female,27,54000,0 15727696,Male,30,135000,1 15793813,Female,31,89000,0 15694395,Female,24,32000,0 15764195,Female,18,44000,0 15744919,Female,29,83000,0 15671655,Female,35,23000,0 15654901,Female,27,58000,0 15649136,Female,24,55000,0 15775562,Female,23,48000,0 15807481,Male,28,79000,0 15642885,Male,22,18000,0 15789109,Female,32,117000,0 15814004,Male,27,20000,0 15673619,Male,25,87000,0 15595135,Female,23,66000,0 15583681,Male,32,120000,1 15605000,Female,59,83000,0 15718071,Male,24,58000,0 15679760,Male,24,19000,0 15654574,Female,23,82000,0 15577178,Female,22,63000,0 15595324,Female,31,68000,0 15756932,Male,25,80000,0 15726358,Female,24,27000,0 15595228,Female,20,23000,0 15782530,Female,33,113000,0 15592877,Male,32,18000,0 15651983,Male,34,112000,1 15746737,Male,18,52000,0 15774179,Female,22,27000,0 15667265,Female,28,87000,0 15655123,Female,26,17000,0 15595917,Male,30,80000,0 15668385,Male,39,42000,0 15709476,Male,20,49000,0 15711218,Male,35,88000,0 15798659,Female,30,62000,0 15663939,Female,31,118000,1 15694946,Male,24,55000,0 15631912,Female,28,85000,0 15768816,Male,26,81000,0 15682268,Male,35,50000,0 15684801,Male,22,81000,0 15636428,Female,30,116000,0 15809823,Male,26,15000,0 15699284,Female,29,28000,0 15786993,Female,29,83000,0 15709441,Female,35,44000,0 15710257,Female,35,25000,0 15582492,Male,28,123000,1 15575694,Male,35,73000,0 15756820,Female,28,37000,0 15766289,Male,27,88000,0 15593014,Male,28,59000,0 15584545,Female,32,86000,0 15675949,Female,33,149000,1 15672091,Female,19,21000,0 15801658,Male,21,72000,0 15706185,Female,26,35000,0 15789863,Male,27,89000,0 15720943,Male,26,86000,0 15697997,Female,38,80000,0 15665416,Female,39,71000,0 15660200,Female,37,71000,0 15619653,Male,38,61000,0 15773447,Male,37,55000,0 15739160,Male,42,80000,0 15689237,Male,40,57000,0 15679297,Male,35,75000,0 15591433,Male,36,52000,0 15642725,Male,40,59000,0 15701962,Male,41,59000,0 15811613,Female,36,75000,0 15741049,Male,37,72000,0 15724423,Female,40,75000,0 15574305,Male,35,53000,0 15678168,Female,41,51000,0 15697020,Female,39,61000,0 15610801,Male,42,65000,0 15745232,Male,26,32000,0 15722758,Male,30,17000,0 15792102,Female,26,84000,0 15675185,Male,31,58000,0 15801247,Male,33,31000,0 15725660,Male,30,87000,0 15638963,Female,21,68000,0 15800061,Female,28,55000,0 15578006,Male,23,63000,0 15668504,Female,20,82000,0 15687491,Male,30,107000,1 15610403,Female,28,59000,0 15741094,Male,19,25000,0 15807909,Male,19,85000,0 15666141,Female,18,68000,0 15617134,Male,35,59000,0 15783029,Male,30,89000,0 15622833,Female,34,25000,0 15746422,Female,24,89000,0 15750839,Female,27,96000,1 15749130,Female,41,30000,0 15779862,Male,29,61000,0 15767871,Male,20,74000,0 15679651,Female,26,15000,0 15576219,Male,41,45000,0 15699247,Male,31,76000,0 15619087,Female,36,50000,0 15605327,Male,40,47000,0 15610140,Female,31,15000,0 15791174,Male,46,59000,0 15602373,Male,29,75000,0 15762605,Male,26,30000,0 15598840,Female,32,135000,1 15744279,Male,32,100000,1 15670619,Male,25,90000,0 15599533,Female,37,33000,0 15757837,Male,35,38000,0 15697574,Female,33,69000,0 15578738,Female,18,86000,0 15762228,Female,22,55000,0 15614827,Female,35,71000,0 15789815,Male,29,148000,1 15579781,Female,29,47000,0 15587013,Male,21,88000,0 15570932,Male,34,115000,0 15794661,Female,26,118000,0 15581654,Female,34,43000,0 15644296,Female,34,72000,0 15614420,Female,23,28000,0 15609653,Female,35,47000,0 15594577,Male,25,22000,0 15584114,Male,24,23000,0 15673367,Female,31,34000,0 15685576,Male,26,16000,0 15774727,Female,31,71000,0 15694288,Female,32,117000,1 15603319,Male,33,43000,0 15759066,Female,33,60000,0 15814816,Male,31,66000,0 15724402,Female,20,82000,0 15571059,Female,33,41000,0 15674206,Male,35,72000,0 15715160,Male,28,32000,0 15730448,Male,24,84000,0 15662067,Female,19,26000,0 15779581,Male,29,43000,0 15662901,Male,19,70000,0 15689751,Male,28,89000,0 15667742,Male,34,43000,0 15738448,Female,30,79000,0 15680243,Female,20,36000,0 15745083,Male,26,80000,0 15708228,Male,35,22000,0 15628523,Male,35,39000,0 15708196,Male,49,74000,0 15735549,Female,39,134000,1 15809347,Female,41,71000,0 15660866,Female,58,101000,1 15766609,Female,47,47000,0 15654230,Female,55,130000,1 15794566,Female,52,114000,0 15800890,Female,40,142000,1 15697424,Female,46,22000,0 15724536,Female,48,96000,1 15735878,Male,52,150000,1 15707596,Female,59,42000,0 15657163,Male,35,58000,0 15622478,Male,47,43000,0 15779529,Female,60,108000,1 15636023,Male,49,65000,0 15582066,Male,40,78000,0 15666675,Female,46,96000,0 15732987,Male,59,143000,1 15789432,Female,41,80000,0 15663161,Male,35,91000,1 15694879,Male,37,144000,1 15593715,Male,60,102000,1 15575002,Female,35,60000,0 15622171,Male,37,53000,0 15795224,Female,36,126000,1 15685346,Male,56,133000,1 15691808,Female,40,72000,0 15721007,Female,42,80000,1 15794253,Female,35,147000,1 15694453,Male,39,42000,0 15813113,Male,40,107000,1 15614187,Male,49,86000,1 15619407,Female,38,112000,0 15646227,Male,46,79000,1 15660541,Male,40,57000,0 15753874,Female,37,80000,0 15617877,Female,46,82000,0 15772073,Female,53,143000,1 15701537,Male,42,149000,1 15736228,Male,38,59000,0 15780572,Female,50,88000,1 15769596,Female,56,104000,1 15586996,Female,41,72000,0 15722061,Female,51,146000,1 15638003,Female,35,50000,0 15775590,Female,57,122000,1 15730688,Male,41,52000,0 15753102,Female,35,97000,1 15810075,Female,44,39000,0 15723373,Male,37,52000,0 15795298,Female,48,134000,1 15584320,Female,37,146000,1 15724161,Female,50,44000,0 15750056,Female,52,90000,1 15609637,Female,41,72000,0 15794493,Male,40,57000,0 15569641,Female,58,95000,1 15815236,Female,45,131000,1 15811177,Female,35,77000,0 15680587,Male,36,144000,1 15672821,Female,55,125000,1 15767681,Female,35,72000,0 15600379,Male,48,90000,1 15801336,Female,42,108000,1 15721592,Male,40,75000,0 15581282,Male,37,74000,0 15746203,Female,47,144000,1 15583137,Male,40,61000,0 15680752,Female,43,133000,0 15688172,Female,59,76000,1 15791373,Male,60,42000,1 15589449,Male,39,106000,1 15692819,Female,57,26000,1 15727467,Male,57,74000,1 15734312,Male,38,71000,0 15764604,Male,49,88000,1 15613014,Female,52,38000,1 15759684,Female,50,36000,1 15609669,Female,59,88000,1 15685536,Male,35,61000,0 15750447,Male,37,70000,1 15663249,Female,52,21000,1 15638646,Male,48,141000,0 15734161,Female,37,93000,1 15631070,Female,37,62000,0 15761950,Female,48,138000,1 15649668,Male,41,79000,0 15713912,Female,37,78000,1 15586757,Male,39,134000,1 15596522,Male,49,89000,1 15625395,Male,55,39000,1 15760570,Male,37,77000,0 15566689,Female,35,57000,0 15725794,Female,36,63000,0 15673539,Male,42,73000,1 15705298,Female,43,112000,1 15675791,Male,45,79000,0 15747043,Male,46,117000,1 15736397,Female,58,38000,1 15678201,Male,48,74000,1 15720745,Female,37,137000,1 15637593,Male,37,79000,1 15598070,Female,40,60000,0 15787550,Male,42,54000,0 15603942,Female,51,134000,0 15733973,Female,47,113000,1 15596761,Male,36,125000,1 15652400,Female,38,50000,0 15717893,Female,42,70000,0 15622585,Male,39,96000,1 15733964,Female,38,50000,0 15753861,Female,49,141000,1 15747097,Female,39,79000,0 15594762,Female,39,75000,1 15667417,Female,54,104000,1 15684861,Male,35,55000,0 15742204,Male,45,32000,1 15623502,Male,36,60000,0 15774872,Female,52,138000,1 15611191,Female,53,82000,1 15674331,Male,41,52000,0 15619465,Female,48,30000,1 15575247,Female,48,131000,1 15695679,Female,41,60000,0 15713463,Male,41,72000,0 15785170,Female,42,75000,0 15796351,Male,36,118000,1 15639576,Female,47,107000,1 15693264,Male,38,51000,0 15589715,Female,48,119000,1 15769902,Male,42,65000,0 15587177,Male,40,65000,0 15814553,Male,57,60000,1 15601550,Female,36,54000,0 15664907,Male,58,144000,1 15612465,Male,35,79000,0 15810800,Female,38,55000,0 15665760,Male,39,122000,1 15588080,Female,53,104000,1 15776844,Male,35,75000,0 15717560,Female,38,65000,0 15629739,Female,47,51000,1 15729908,Male,47,105000,1 15716781,Female,41,63000,0 15646936,Male,53,72000,1 15768151,Female,54,108000,1 15579212,Male,39,77000,0 15721835,Male,38,61000,0 15800515,Female,38,113000,1 15591279,Male,37,75000,0 15587419,Female,42,90000,1 15750335,Female,37,57000,0 15699619,Male,36,99000,1 15606472,Male,60,34000,1 15778368,Male,54,70000,1 15671387,Female,41,72000,0 15573926,Male,40,71000,1 15709183,Male,42,54000,0 15577514,Male,43,129000,1 15778830,Female,53,34000,1 15768072,Female,47,50000,1 15768293,Female,42,79000,0 15654456,Male,42,104000,1 15807525,Female,59,29000,1 15574372,Female,58,47000,1 15671249,Male,46,88000,1 15779744,Male,38,71000,0 15624755,Female,54,26000,1 15611430,Female,60,46000,1 15774744,Male,60,83000,1 15629885,Female,39,73000,0 15708791,Male,59,130000,1 15793890,Female,37,80000,0 15646091,Female,46,32000,1 15596984,Female,46,74000,0 15800215,Female,42,53000,0 15577806,Male,41,87000,1 15749381,Female,58,23000,1 15683758,Male,42,64000,0 15670615,Male,48,33000,1 15715622,Female,44,139000,1 15707634,Male,49,28000,1 15806901,Female,57,33000,1 15775335,Male,56,60000,1 15724150,Female,49,39000,1 15627220,Male,39,71000,0 15672330,Male,47,34000,1 15668521,Female,48,35000,1 15807837,Male,48,33000,1 15592570,Male,47,23000,1 15748589,Female,45,45000,1 15635893,Male,60,42000,1 15757632,Female,39,59000,0 15691863,Female,46,41000,1 15706071,Male,51,23000,1 15654296,Female,50,20000,1 15755018,Male,36,33000,0 15594041,Female,49,36000,1